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ABSTRACT  From birth, the microbiota plays an essential role in human devel-
opment by educating host immune responses. Proper maturation of the im-
mune system perturbs chronic inflammation and the pathogenesis of disease 
by preventing inappropriate immune responses. While many have detailed 
the roles of specific microbial groups in immune development and human 
disease, it remains to be elucidated how the microbiota influences the im-
mune system during aging. Furthermore, it is not yet understood how age-
related changes to the microbiota and immune system influence the devel-
opment of age-related diseases. In this review, we outline the role of the mi-
crobiota in immune system development as well as functional changes that 
occur to immune cell populations during immunosenescence. In addition, we 
highlight how commensal microbes influence the pathogenesis of cancer, a 
prominent disease of aging. The information provided herein suggests that 
age-related changes to the microbiota and immune system should be consid-
ered in disease treatment and prevention strategies. 
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INTRODUCTION 
Our microbiota is an integral part of our mammalian selves. 
Indeed, all multi-cellular eukaryotic hosts across the tree of 
life have an essential and characteristic microbiota that 
influences host development and resistance to disease. 
Complex organisms, such as vertebrates, host numerous 
microbial communities whose composition and function 
are relevant to their habitat at different body sites, such as 
the intestines (“gut”), skin, and oral cavity. The human gut 
microbiota is perhaps the best studied, most abundant, 
and arguably, the most influential microbiota that impacts 

host phenotypes [1]. In recent decades, the development 
of several scientific tools has exponentially increased our 
understanding of the microbiota and interactions with its 
human host. These include model organisms, most notably 
laboratory mice, that are born and raised germ-free (GF) 
and then colonized with known individual strains or groups 
of microbes – “gnotobiotic”. Through the use of GF and 
gnotobiotic mice, we have been able to demonstrate cau-
sality of specific microbes and microbial groups with dis-
tinct processes on immune development and non-
infectious diseases like chronic inflammation and cancer, 
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among others [1–3]. To validate the physiologic relevance 
of observations made in model organisms with human 
disease, we can now survey the human microbiota at an 
unprecedented depth using culture-independent molecular 
methods (i.e. targeted 16S “microbiome” sequencing, met-
agenomics, metatranscriptomics, and metabolomics) cou-
pled with sophisticated bioinformatics pipelines. An im-
portant finding from population studies of the microbiome 
has revealed that the compositional fluctuations in an indi-
vidual’s microbiome over time are less substantial than 
inter-individual differences at a particular stage in devel-
opment. However, the developmental changes that occur 
during early life and over an individual’s lifespan certainly 
shape the composition and function of the microbiota [4]. 
On the other hand, the composition and functional capabil-
ities of the microbiota shape host development [1]. In this 
review we discuss the current state of knowledge regard-
ing the influence of our mammalian microbiota on the im-
mune system, chronic inflammation, and a prominent dis-
ease of the aging – cancer. 

 

THE IMMUNE SYSTEM AND MICROBIOTA IN AGING 
The immune system is our major host defense system that 
is educated early in life to distinguish harmful stimuli, in-
cluding microorganisms. It is broadly subdivided into two 
branches, the innate and adaptive immune systems. The 
innate immune response is the first line of defense towards 
invading pathogens. For example, this branch of the im-
mune system is involved when conserved pathogen-
specific molecules trigger host cell pattern recognition re-
ceptors, which promotes an immediate and broad-
spectrum protective response to pathogens. Conversely, 
the vertebrate adaptive immune response relies upon 
binding of unique antigens to specialized receptors, which 
ultimately leads to activation of T and B lymphocytes and 
the creation of pathogen-specific immunological memory. 
Through precise coordination, these systems provide host 
defense against foreign invaders. However, to efficiently 
mediate its response, the immune system must accurately 
distinguish between resident host-associated organisms 
and those that are potentially deleterious [5]. Over the 
course of our lifetime, our immune system encounters a 
diverse range of stimuli in a variety of contexts, which chal-
lenges the ability of the immune system to differentiate 
between self and non-self [6]. Alterations in this response 
can result in the development of a variety of diseases that 
include chronic inflammatory diseases, like inflammatory 
bowel disease (IBD) and cancer [7, 8]. As these immune 
responses are shaped over a lifetime, it indicates that age 
impacts the recognition of stimuli, which could transfer 
towards inappropriately reacting to residential host mi-
crobes. Inappropriate reactions to resident commensal 
bacteria may underlie a variety of pathogenic processes 
associated with aging (Figure 1). 

 
Microbial influences on immune development 
Establishment of the microbiota begins from birth and con-
tinues until post-weaning [9]. During establishment, the 

microbiota is highly diverse and prone to fluctuations 
based on environmental and dietary changes [10]. After 2-
3 years of age, this complex community stabilizes with the 
majority of bacterial community members remaining un-
changed throughout an individual’s lifespan [11]. After 
stabilization, the core human microbiota mainly comprises 
the following phyla: Bacteroidetes and Firmicutes, with a 
smaller abundance of Actinobacteria, Proteobacteria, and 
Verrucomicrobia [12]. The aging process strongly impacts 
the composition of the microbiota as individuals with in-
creased frailty, an assessment of biological age based on 
current health status and life expectancy, lose bacterial 
diversity and form a Bacteroidetes dominant population 
[13]. This loss of microbial diversity may potentiate aging 
and disease. Indeed, an aging model in turquoise killifish 
reported that older fish had a marked decrease in gut mi-
crobial diversity which favored more pathogenic genera 
[14]. Moreover, transferring the gut microbiota of these 
young turquoise killifish into middle-aged fish helped re-
tain species diversity and significantly increased overall 
lifespan [14]. While not directly correlated to chronological 
aging, this loss of bacterial diversity most often begins in 
humans between 75-80 years of age and is a form of 
dysbiosis that potentiates disease development [15]. These 
results are a generality derived from a diverse population, 
and only consider numerical age (lifespan) rather than the 
individual’s aging-related health status (healthspan) [16]. 
Despite this correlation, it is important to remember that 
the microbiota play a largely protective role in disease de-
velopment by initiating and educating the host immune 
system [17].   

Early observations in GF mice demonstrated that the 
host microbiota is essential for the maturation of the im-
mune system [17, 18]. In the absence of a microbiota, GF 

Figure 1: Aging, changes in immune response, and alterations 
of the microbiota contribute to chronic disease development. 
Relationships between the immune system, native microbiota, 
and general age-related biological changes all influence chronic 
inflammation and aging-related disease. 
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mice have several immunological defects, including re-
duced lymphoid cell numbers and function [19]. For exam-
ple, GF mice have fewer T helper type 1 (Th1) cells com-
pared to their conventionalized counterparts [20]. Th1 cells 
promote cell-mediated immune responses and phagocyte-
dependent inflammation to target intracellular pathogens 
[21]. Th1 responses in GF mice can be restored through 
host colonization with a variety of microbes, including the 
well-studied pathogen Listeria monocytogenes, which 
promotes Th1 development through macrophage produc-
tion of the T cell-stimulating factor, interleukin 12 (IL-12) 
[22]. Intracellular bacteria like L. monocytogenes specifical-
ly induce Th1 responses in the gut [23]. Additionally, GF 
mice have a reduced number of T helper type 17 (Th17) 
cells. Th17 cells are generally pro-inflammatory, however, 
they drive production of IL-17 and mediate defense against 
extracellular pathogens and autoimmune disease [20, 21]. 
Adherent bacteria, such as Clostridia-related segmented 
filamentous bacteria (SFB), induce the development of 
Th17 cells in the small intestine by driving the release of 
serum amyloid A from intestinal epithelial cells (IECs). The 
release of serum amyloid A results in the production of 
innate lymphoid cell group 3 (ILC3) cytokines which upreg-
ulate the Th17 response [24]. Fine-tuning of Th1 and Th17 
responses are essential for immune tolerance towards the 
host microbiota, as seen in the case of IBD where aberrant 
populations of Th1 and Th17 cells lead to enhanced pa-
thology [7]. Underdevelopment of these responses may 
underlie the progression of other diseases associated with 
chronic inflammation, such as cancer [25, 26].   

The absence of a microbiota impacts most, if not all, 
aspects of the immune system [1]. However, we are just 
beginning to understand precisely which microbes induce 
specific effects, and where the window of opportunity lies 
for correcting many of these immune deficiencies. One 
study examining colonic invariant natural killer T (iNKT) cell 
populations revealed that this opportunity for modulation 
likely occurs during infancy, prior to weaning [27]. At birth, 
GF mice have an enriched population of colonic lamina 
propria iNKT cells compared to specific-pathogen-free 
(SPF) mice [28]. iNKT cells are pro-inflammatory and medi-
ate tolerance to commensal microbes [29]. Colonization of 
adult (>5 weeks of age) GF mice with a complex microbiota 
does not influence the number or activity of iNKT cells [27]. 
However, if the colonization occurs when GF mice are neo-
nates, the number of iNKT cells is reduced and their later 
activation is well-controlled [27]. This early education of 
the colonic iNKT cell population is important for limiting 
morbidity associated with IBD [27]. This supports the idea 
that exposure to specific microbes and microbial products 
is needed within a certain developmental time for the host 
to appropriately educate target immune populations and 
prevent disease. 
 
The immune system and aging 
The presence of a microbiota in early life is essential for 
immune system maturation. However, education of the 
immune response is a lifelong process. Alterations to the 
innate and adaptive immune systems which occur with 

increased frailty are linked to a complex biological process 
known as immunosenescence [30]. Specific changes asso-
ciated with immunosenescence can best be understood 
through functional differences within the unique cell types 
of the innate and adaptive immune systems. For cells of 
the innate immune system, there are reported functional 
differences for every major cell type [31]. However, the 
most distinct differences are within neutrophil and macro-
phage populations. Neutrophils isolated from the blood of 
individuals (aged 62-83 years old) displayed reduced phag-
ocytic capabilities and decreased production of reactive 
oxygen species (ROS) when infected with Staphylococcus 
aureus, which correlated with impaired bactericidal activity 
[32]. Neutrophils are the first line of defense towards in-
vading pathogens; therefore, immunosenescence-related 
changes to this cell type suggest an age-related decline in 
pathogen-induced responses and tolerance towards resi-
dent microbes [5]. Similarly, primary macrophages isolated 
from aged mice (18-24 months old) exhibit impaired phag-
ocytosis and reduced ROS production in response to infec-
tion, when compared to macrophages isolated from young 
mice (2-3 months old) [33, 34]. Additionally, macrophages 
from aged mice displayed modifications in antigen presen-
tation and reduced production of pro-inflammatory cyto-
kines [35, 36]. Alterations in macrophage antigen presenta-
tion and cytokine release may lead to defective immune 
signaling between the innate and adaptive immune sys-
tems, resulting in a weakened immune response [5]. Over-
all, age-related changes to the innate immune system 
strongly reduce the host’s initial response to pathogens 
and how the innate system informs adaptive responses. 
Strategic communication and coordination between these 
systems is required for proper immune functioning; there-
fore, maladaptive innate immune responses can misinform 
the subsequent adaptive immune responses and contrib-
ute to the development of disease. 

While changes in the innate immune system have been 
noted with aging, long-term effects of the microbiota on 
adaptive responses are more pronounced [31, 37]. The 
adaptive immune system is used for long-term protection 
from environmental insult and invading pathogens. There-
fore, long-term education of this subsystem could have 
additive effects on immunosenescence. B cells are a major 
cell type of the adaptive immune system. The population 
of antigen-experienced B cells is divided into plasma cells 
and memory B cells. Plasma cells produce pathogen specif-
ic antibodies, while memory B cells provide long-term 
recognition of antigens via their ability to quickly reactivate 
upon subsequent antigen encounter [38]. Peripheral blood 
isolated from elderly individuals (aged 86-94 years old) 
showed a reduction in B cell population diversity that was 
attributed to a decrease in memory B cells [39]. This de-
cline in B cell diversity was linked to increased frailty and 
could be used as a predictor for general health status [39]. 
A reduction in memory B cell numbers may cause an inap-
propriate immune response towards the microbiota, as B 
cells are important for establishing the distinction between 
pathogenic and commensal bacteria [38]. The reduction in 
memory B cell numbers that accompanies age may facili-
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tate inappropriate immune responses towards the micro-
biota, promoting microbial dysbiosis and enhancing dis-
ease risk. 

T cells are the second major cell type of the adaptive 
immune system and are classified as either conventional or 
unconventional T lymphocytes [40]. This classification is 
based on unique T cell surface markers, functional ability, 
and body site localization [40]. In general, T cells become 
activated upon binding of an antigen which is displayed on 
the surface of antigen presenting cells (APC) [41]. Once 
activated, conventional T cells can perform a wide range of 
functions from promoting long-term immunity to killing 
infected cells [41]. During immunosenescence, one of the 
most prominent changes to occur within conventional T 
cell populations is the reduction of CD28+ T cells [42]. CD28 
is a co-stimulatory protein expressed on naïve T cells and is 
important for T cell activation, regulation, and survival. 
Therefore, a reduction in CD28+ T cells may lessen T cell 
activation causing increased susceptibility to pathogens 
[43]. Additionally, the loss of CD28 may decrease tolerance 
to self-antigens and the microbiota as it is also a negative 
regulator of immune responses [43, 44]. To highlight this 
point, a recent article revealed an age-related reduction in 
naïve CD8+ T cells, which could compromise host response 
to pathogens and self-antigens [45]. Conversely, this group 
found an age-associated increase in memory CD4+ T cells, 
which corresponds to the cumulative effects of a lifelong 
antigenic load [45]. Alterations in conventional T cell popu-
lations may contribute to chronic inflammation and the 
onset of age-related disease thorough inappropriate im-
mune responses towards pathogens and the self. 

While conventional T cells perform a wide range of 
functions, their role during immunosenescence is complex 
and not fully detailed. On the other hand, a class of uncon-
ventional T cells, known as natural killer T (NKT) cells, are 
strongly influenced by the microbiota and immunosenes-
cence. In two separate studies, populations of T cells iso-
lated from the peripheral blood of elderly patients showed 
a reduction in the proportion of NKT cells versus cells iso-
lated from young patients [46, 47]. Additionally, NKT cells 
isolated from the liver of aged mice (aged >20 months old) 
demonstrated a decline in cytotoxic effector function, and 
reduced cytokine release versus NKT cells isolated from 
young mice (aged 2 months old) [48]. This decline in NKT 
cell number and immunological function may exacerbate 
disease development by weakening the host’s response to 
pathogens and reducing immunotolerance towards the 
microbiota. 

A decrease in the proportion of CD28+ T cells and NKT 
cells may potentiate the development of autoimmune dis-
eases within elderly populations by reducing tolerance to 
self-antigens. However, despite an increase in autoanti-
gens within aging individuals, old-age is not a major risk 
factor for most autoimmune diseases. Studies looking at 
the proportion of regulatory T cells (Tregs), demonstrate 
that the repertoire of peripheral Tregs is higher within el-
derly humans [49]. Since Tregs promote tolerance to self-
antigens, the higher proportion of Tregs in aging individu-
als could be working against perturbations in immunocom-

petence to prevent autoimmune diseases. More studies 
are needed to demonstrate age-related changes in Treg 
functional capacity. Nevertheless, an increased proportion 
of Tregs is not without some cost as immunosuppression 
by Tregs may promote chronic infections, reduce vaccine 
efficiency, and increase rates of cancer among the elderly. 
However, it remains to be seen what impact the microbio-
ta has on T cell-based immunosenescence in the context of 
aging. 

The host microbiota initiates immune system matura-
tion in early life. However, to keep up with a lifelong anti-
genic load, the immune response must be fine-tuned and 
properly educated across the lifespan. Despite these ob-
servations, it remains unclear how age-related immunolog-
ical changes impact cellular crosstalk and overall immuno-
competence. On top of this, how the microbiota impacts 
the immune system during immunosenescence remains to 
be elucidated. It is likely that changes to the immune sys-
tem result in an inappropriate response towards commen-
sal microbes, as indicated by diseases like IBD [3, 50]. Inap-
propriate reactions to the native microbiota and lessened 
ability to control invading pathogens may contribute to the 
development of chronic inflammation and the onset of 
age-related diseases, such as cancer [51]. 
 

MICROBIOTA AND CANCER – A DISEASE OF AGING 
Cancer is considered a disease of old age. As life expectan-
cy increases, the estimated rate of cancer is predicted to 
increase by 45% from 2011 to 2030 in the United States 
[52]. It is also estimated that by 2030, individuals 65 years 
and older will contribute to 70% of all cancers in the U.S. 
[53]. The risk of developing cancer increases dramatically 
with age as the duration of time in which an individual is 
exposed to carcinogens increases [54], the proliferative 
capacity of aging cells decreases [55], and immunological 
competence decreases [56]. Cancer typically results from a 
series of genetic mutations or epigenetic modifications 
that develop sequentially overtime [57]. The colon, which 
harbors the largest and most diverse microbiota of all or-
gans, has the highest incidence rate of all reported cancers 
in the 85+ population [58]. Over the past decade, we have 
become increasingly aware of the roles that the microbiota 
play in the development of cancer and modulation of can-
cer therapies. We have also elucidated several mechanisms 
underlying the microbial influences on cancer. However, 
these roles are diverse and seem to influence many as-
pects of immune and cancer development [59]. Microbes 
can contribute to the onset and progression of cancer 
through direct means, such as by producing genotoxins, 
and indirect means through the modulation of immune 
responses to tumors and immunotherapy [60–64]. Addi-
tionally, several members of the native microbiota can 
alter chemotherapeutic drugs, resulting in morbid side 
effects for the host or even rendering them clinically inert 
[65, 66]. It is therefore important to divulge the signifi-
cance of microbial interactions on age-related diseases, 
such as cancer, in order to fully understand disease pro-
gression and design suitable therapies. Here we will discuss 
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known mechanisms by which the microbiota can influence 
the onset of cancer, endogenous anti-cancer immune re-
sponses, chemotherapeutic activities, and anti-tumor im-
munotherapy. 

 
Endogenous anti-cancer immune responses 
The ability to manipulate the microbiota using GF and gno-
tobiotic mice has demonstrated the importance of the 
microbiota on immune system development and the gas-
trointestinal environment. A notable example is microbial 
modulation of bile acid composition, which can influence 
immune responses and also affect the development of 
malignancies. Host-derived primary bile acids are convert-
ed into secondary bile acids by the gut microbiota, primari-
ly by members of the genus Clostridia, and circulated sys-
temically throughout the body via hepatic circulation [67]. 
Previous work illustrated that secondary bile acids can in-
crease the risk of obesity-associated hepatocellular carci-
noma in susceptible mice [68]. Recent data suggests that 
antibiotic elimination of the gut microbiota in mice de-
creases both primary and metastatic tumors within the 
liver by facilitating the buildup of primary bile acids, which 
trigger liver-specific NKT cell recruitment to target cancer 
cells [69]. However, the influences of Clostridia spp. on the 
development of cancer are likely more complex. Treatment 
of colorectal cancer (CRC)-prone mice with the probiotic 
cocktail VSL#3, a mixture of lactic acid-producing bacteria 
with anti-inflammatory properties, decreased the popula-
tion of Clostridia spp. in the gut and subsequently en-
hanced tumorigenesis, suggesting that some Clostridia spp. 
may also be protective against the onset of malignancies 
[70]. These data highlight how further understanding the 
conditions by which particular species promote or perturb 
the development of cancer must be addressed when as-
sessing cancer risk, prevention, and treatment. The pro-
found effects the bacteria elicit on cytotoxic immune cells 
and tumor development provide key insights on how the 
native microbiota influence host anti-cancer responses. 

Fusobacterium nucleatum, a Gram-negative oral com-
mensal overrepresented in CRC, can promote tumorigene-
sis via direct effects on the epithelium and through the 
modulation of endogenous immune responses [62, 71]. A 
known target is the natural killer (NK) cell, which kills com-
promised host cells, such as infected or cancerous cells.  
F. nucleatum inhibits the cytotoxicity of NK cells via the 
Fusobacterium protein Fap2, which binds the NK cell inhib-
itor receptor TIGIT (T cell immunoglobulin and ITIM or im-
munoreceptor tyrosine-based inhibition motif domain) [72]. 
In addition to targeting the immune system, F. nucleatum 
exerts procarcinogenic activities directly on epithelial cells 
through β-catenin signaling, altering proliferation and cell 
fate [73]. F. nucleatum can also alter the efficacy of chemo-
therapeutic drugs by inhibiting host cell apoptotic path-
ways [74]. F. nucleatum is a prime example of one species 
of the microbiota that exhibits a variety of different effects 
on the host to mediate tumorigenesis and hinder cancer 
therapy. In the next few sections, we will discuss a variety 
of known bacterial mechanisms that act upon cancer de-
velopment and treatment. 

Cancer immunotherapy, the microbiota, and aging 
Several independent groups have recently demonstrated 
that some members of the microbiota play critical roles in 
determining patient responsiveness to cancer immuno-
therapy. The exact mechanisms by which individual species 
of bacteria exhibit these effects are not fully understood. 
However, current data suggest that bacterial modulation of 
the immune system may be one critical mode of altering 
host response to cancer therapy. Recent data regarding 
anti-PD1 therapy supports this notion. Anti-PD1 treatment 
is a type of immune checkpoint inhibitor that enhances 
anti-tumor immune responses by maintaining T cell activa-
tion via blocking the immune inhibitory receptors pro-
grammed death ligand-1 and 2 (PDL-1 and PDL-2) [75]. 
Anti-PD1 therapy is often prescribed to patients with lung 
cancer and advanced melanoma. However, the efficacy of 
anti-PD1 immunotherapy ranges from only 19 to 43% for 
both cancer types [76, 77]. Several members of the micro-
biota are enriched in PD-1 responders, including Bifidobac-
terium longum, Collinsella aerofaciens, and Enterococcus 
faecium [78]. Faecalibacterium, an abundant Gram-positive 
genus of commensals in the human gut, was also enriched 
in PD1-responders [61]. Tumor-bearing mice that were 
given fecal microbiota transplants (FMTs) from PD1-
responders exhibited decreased tumor burden and tumor 
size when receiving anti-PD1 therapy. Faecalibacterium 
promoted cytotoxic (CD8+) T cell recruitment to tumors, 
which may be an important mechanism underlying the 
ability of this bacterial group to enhance anti-PD1 respons-
es and reduce tumor burden [61]. Similarly, FMTs from 
PD-1 responders enhanced PD-1 treatment in recipient 
mice, which was further augmented with oral supplemen-
tation of the commensal Akkermansia muciniphila [79]. 
Antibiotic treatment reduced the efficacy of PD-1 immuno-
therapy in mice, consistent with clinical reports of reduced 
PD-1 efficacy in patients simultaneously taking antibiotics 
[79]. These studies demonstrate that multiple species of 
bacteria have the capability of altering immunotherapeutic 
responses in patients. Moving forward, it will be critical to 
consider the contributions of these microbial communities 
when developing anti-tumor immunotherapies. 

There is a paucity of data evaluating the combined in-
fluences of the microbiota and age in immunotherapeutic 
outcomes. Some studies have investigated the effects of 
age on immunotherapy; however, the majority of studies 
heavily rely on metadata and have found few differences in 
immunotherapeutic efficacy in relation to age [80]. One 
metadata study reported improved overall survival from 
anti-CTL4 treatment, but not anti-PD1 treatment in indi-
viduals > 75 years of age [81]. Another study in mice 
showed that CD40/IL-2 treatment for metastatic renal cell 
carcinoma increases mortality in aged mice compared to 
young mice, due to multi-organ failure/systematic toxicity 
[82]. This study illustrates that immunotherapies, which 
are commonly developed in young mouse models (2-4 
months old), may not take into account the immune 
changes that occur in aging populations; therefore, the 
altered immune environment associated with aging should 
be considered when developing suitable immunotherapeu-



T.N. Tibbs et al. (2019)  Microbiota and aging diseases 

 
 

OPEN ACCESS | www.microbialcell.com 329 Microbial Cell | AUGUST 2019 | Vol. 6 No. 8 

tic strategies. Furthermore, side effects of immunothera-
pies may be exacerbated in the elderly due to other age-
related deficiencies, such as increased risk of dehydration 
from reduced kidney function. The contribution of the mi-
crobiota on immunotherapeutic outcomes specifically in 
aged individuals is unknown. Clinicians should be thought-
ful in prescribing immunotherapies to aged individuals and 
consider immunocompetency changes and individual mi-
crobial diversity that may exacerbate side effects or affect 
the efficacy of immunotherapeutic drugs. 

 
Chemotherapy and the microbiota 
Multiple members of the microbiota can differentially in-
fluence cancer chemotherapy, with some enhancing and 
some inhibiting the clinical effects of chemotherapeutic 
drugs. An important early observation was that genotoxic 
platinum chemotherapies, including oxaliplatin and cispla-
tin, were ineffective in tumor-bearing GF mice, indicating 
that the presence of a complex microbiota is essential for 
these chemotherapies [83]. Platinum chemotherapies 
promote ROS to induce cytotoxicity. The DNA damage in-
cited by cisplatin is augmented via the production of mito-
chondrial ROS within tumor-associated inflammatory cells 
and cancer cells themselves [83, 84]. It may be that in the 
absence of a native microbiota, inflammatory cells are not 
effectively primed to produce ROS during development, 
leading to shortcomings in ROS production later in life that 
may affect the efficacy of platinum-based chemotherapies. 
These data illustrate that a properly developed immune 
system trained by the native microbiota augment anti-
tumor responses during chemotherapeutic treatment. Fur-
thermore, these insights highlight the influential capacity 
of the microbiota on the host and how in their absence, 
the immune system may have substantial deficits in anti-
tumor responses. 

Conversely, the microbiota can have negative effects 
on chemotherapeutic efficacy. Deep sequencing for mi-
crobes within pancreatic tumor biopsies revealed that 
57.5% of pancreatic tumor tissues tested (65 of 113 sam-
ples) were positive for bacterial reads, with Gammaprote-
obacteria being the most abundant (51.7% of reads) [66]. 
Interestingly, 98.4% of Gammaproteobacteria contain 
genes that encode a specific isoform of the enzyme cyti-
dine deaminase (CDDL), which has the ability to break 
down gemcitabine and confer chemotherapeutic re-
sistance in tumor tissues [66]. Accordingly, bacterial migra-
tion from the gastrointestinal tract into the pancreatic 
ducts and tumor tissue may be a significant source of drug 
failure in clinical pancreatic cancer cases. Gut bacteria are 
also responsible for re-activating chemotherapeutic drugs 
in the distal intestine. Irinotecan, a chemotherapeutic drug 
used to treat CRC, is inactivated by the liver, but reactivat-
ed into the active drug by Clostridia spp. through bacterial 
β-glucuronidases in the gut [85]. This re-activation in the 
distal intestine contributes to the typical morbid gastroin-
testinal side effects of irinotecan therapy, including mu-
cositis and diarrhea [65, 85]. This evidence illustrates the 
profound impact the native microbiota can have on the 
response to cancer therapies. Therefore, future treatment 

plans should account for the influence of these patient-
specific microbial factors to ensure successful chemother-
apeutic outcomes. 

 
Direct effects of the microbiota on tumorigenesis 
Specific members of the microbiota have the capacity to 
directly contribute to tumorigenesis [2, 59]. Commensal 
Enterobacteriaceae, including several strains of Escherichia 
coli, are capable of inducing DNA damage in mammalian 
cells by producing a genotoxin termed colibactin [60, 86]. 
The bacterial polyketide synthase (pks) pathogenicity is-
land encoding colibactin is upregulated in CRC mouse 
models and the presence of these gene products promotes 
tumorigenesis by inducing double-stranded DNA breaks 
[87–89]. Colibactin can also induce premature cellular se-
nescence in cells that initially survive the DNA damage [90, 
91]. Furthermore, the pks pathogenicity island is 
overrepresented in the microbiota of CRC and IBD patients, 
who represent a population at high risk of developing CRC 
[60, 92, 93]. In another population at high risk for CRC, 
familial adenomatous polyposis patients, pks+ bacteria are 
found in combination with other pro-carcinogenic mi-
crobes in colonic biofilms [94]. This suggests that bacterial 
genotoxins contribute substantially to the risk and devel-
opment of chronic inflammatory diseases and human can-
cer. 

Gut bacteria also have the capacity to induce a pro-
tumorigenic environment through chronic inflammation. 
Enterotoxigenic Bacteroides fragilis, a member of the most 
abundantly represented genus in the gut, produces its own 
flavor of toxin called B. fragilis-derived toxin (BFT) [95]. BFT 
is a zinc-dependent metalloprotease that can induce colitis 
and promote tumorigenesis through the generation of ROS 
and subsequent initiation of DNA damage in epithelial cells 
[96]. Enterotoxigenic B. fragilis robustly activates Th17 
immune responses, which involves the inflammatory cyto-
kine IL-17, and may lower host anti-tumor immune re-
sponses, encouraging unhindered tumor growth [97, 98]. 
Enterotoxigenic B. fragilis is overrepresented in patients 
with CRC when compared to healthy individuals [64] and 
exacerbates tumorigenesis in susceptible mice [98]. Inter-
estingly, the tumorigenic effects of pks+ E. coli and entero-
toxigenic B. fragilis act synergistically in vivo to quicken 
tumor onset and increase mortality in susceptible mice 
beyond the capability that either species has individually 
[94]. Given that the native microbial community is quite 
complex, the cumulative effects of microbial products on 
the host may significantly contribute to the onset and pro-
gression of cancer. 

While widely considered a pathogen, Helicobacter pylo-
ri is estimated to be present in the gastrointestinal tract of 
over half of the human population worldwide and a major 
risk factor for gastric adenocarcinoma [99, 100]. H. pylori 
was one of the earliest identified microbial suspects of 
inflammation-mediated cancer development and it is esti-
mated that H. pylori infection increases the attributable 
risk of gastric cancer by 73% [101]. Chronic H. pylori infec-
tion results in inflammation and tissue damage by the bac-
terial virulence factor CagA (cytotoxin-associated gene A), 
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which initiates the development of the hallmark precursory 
lesions of gastric cancer, including intestinal metaplasia 
and dysplasia [102]. It remains unclear why H. pylori infec-
tion only progresses to malignancy in a subset of infected 
individuals; however, it is postulated that host immune 
responses and the genetics of both host and microbiota 
contribute to neoplastic development [103]. 

In summary, the mechanisms by which the native mi-
crobiota influences cancer development and therapy are 
numerous and diverse (Figure 2). The evidence presented 
here illustrates the diverse microbial mechanisms that con-
tribute to tumorigenesis, whether that be by directly tar-
geting the DNA for damage through a toxin or by providing 
an augmented environment for unrestricted cellular prolif-
eration. Microbial effects on the immune system are un-
doubtedly involved in these processes. As more data sur-
faces, it will be imperative to synthesize and apply 
knowledge on positive and negative microbial contribu-
tions towards cancer development and treatment. By do-
ing so, we can more effectively assess cancer risk and ulti-
mately design more potent anti-cancer therapies. 

 

CONCLUSION 
Our microbiota plays a central role in human health by 
educating our immune responses to recognize self versus 
non-self, across the lifespan. Immune system development 
begins at birth, with the introduction of the microbiota, 
and only fully matures in the presence of commensal 
microbial flora. Proper maturation of the immune system is 
necessary to prevent aberrant immune responses, which 

can lead to chronic inflammation and the onset of disease. 
It is well understood that fine-tuning the immune response 
is a lifelong educational process; therefore, it is important 
to consider how the microbiota and immune system 
change throughout aging. While studies in this review 
focus on changes linked to chronological age, it is 
necessary to consider how biological age (assessed by 
health status and life expectancy) shapes the microbiota 
and immune system. As we highlight here, a reduction in 
microbial diversity is linked to increased frailty. 
Additionally, all major cell types of the innate and adaptive 
immune systems are functionally altered in the context of 
aging by a process known as immunosenescence. Despite 
these marked differences, not much is known about the 
connection between the microbiota and immune-
senescence. Traditionally, studies have focused on classic 
pathogens and the burden of a lifelong antigenic load as 
they relate to the improvement of vaccine efficiency in the 
elderly. However, decreased ability to fight off foreign 
pathogens is not the only concern of aging. In fact, 
biological age puts elderly at risk for a wide range of age-
related diseases, including cancer, cardiovascular disease, 
and Alzheimer’s disease, all of which have been shown to 
be influenced by the microbiota [2, 3, 104–108] While in 
this review we focus upon how the microbiota and 
immune system influence the pathogenesis of cancer, it is 
worth considering the other changes that occur 
physiologically with aging, how this impacts our microbiota, 
and vice versa. There is no universal microbiota 
composition known to mediate inflammation or anti-tumor 

FIGURE 2: Interplay of the microbiota and immune system influence cancer development during aging. The immune system and native 
microbiota contribute to cancer both directly and indirectly via chronic inflammation, aberrant changes in various immune responses, 
DNA damage, and alterations to the efficacy of anti-cancer therapies. 
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responses. This is because the microbiota and immune 
system are unique to each individual and cultivated over a 
lifespan. Therefore, biological age should be considered in 
pre-clinical models, as age-related factors will likely affect 
therapeutic efficacy and outcomes. Age-related changes 
influence both the host and microbiota; therefore, they 
should be considered during the design of animal and 
human studies to provide a more holistic understanding of 
disease treatment and prevention strategies. 
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