
ORIGINAL ARTICLE

Stochastic changes over time and not founder
effects drive cage effects in microbial community
assembly in a mouse model

Jonathan McCafferty1,5, Marcus Mühlbauer2,5, Raad Z Gharaibeh3, Janelle C Arthur2,
Ernesto Perez-Chanona2, Wei Sha3, Christian Jobin2,4,6 and Anthony A Fodor1,6
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2Department of Medicine, Pharmacology and Immunology-Microbiology, University of North Carolina at
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Genomics, University of North Carolina at Charlotte, Kannapolis, NC, USA

Maternal transmission and cage effects are powerful confounding factors in microbiome studies.
To assess the consequences of cage microenvironment on the mouse gut microbiome, two groups
of germ-free (GF) wild-type (WT) mice, one gavaged with a microbiota harvested from adult WT mice
and another allowed to acquire the microbiome from the cage microenvironment, were monitored
using Illumina 16S rRNA sequencing over a period of 8 weeks. Our results revealed that cage effects
in WT mice moved from GF to specific pathogen free (SPF) conditions take several weeks to develop
and are not eliminated by the initial gavage treatment. Initial gavage influenced, but did not eliminate
a successional pattern in which Proteobacteria became less abundant over time. An analysis
in which 16S rRNA sequences are mapped to the closest sequenced whole genome suggests
that the functional potential of microbial genomes changes significantly over time shifting
from an emphasis on pathogenesis and motility early in community assembly to metabolic processes
at later time points. Functionally, mice allowed to naturally acquire a microbial community from
their cage, but not mice gavaged with a common biome, exhibit a cage effect in Dextran Sulfate
Sodium-induced inflammation. Our results argue that while there are long-term effects of the founding
community, these effects are mitigated by cage microenvironment and successional community
assembly over time, which must both be explicitly considered in the interpretation of microbiome
mouse experiments.
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Introduction

Since Darwin’s formation of the theory of evolution
based on observations made in the Galapagos
Islands, island ecology has played a key role in our

understanding of how communities form and
respond to environmental pressure. The mammalian
gut can be thought of as an island inhabited by a
complex assemblage of microbes. It has been
demonstrated in humans that the initial microbiota
in different body sites is undifferentiated and the
community assembly is strongly influenced by
mode of delivery (Turnbaugh et al., 2007). Over
time, selection pressure on the human microbiota
sculpts different microbial communities in each
body site, so that, for example, the adult oral
microbiota is largely distinct from the adult gut
microbiota (Ursell et al., 2012).

Mouse models of the gut microbiome are essential
tools for studying the contribution of gut bacteria to
human health and disease (Ley et al., 2005;
Turnbaugh et al., 2006; Mazmanian et al., 2008;
Arthur et al., 2012). Because mice can be raised in
germ-free (GF) conditions and then inoculated with
any cultivated microbe or microbial community
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harvested from a human or mouse donor, the mouse
model allows for experimental manipulations not
possible in humans. Despite the power inherent to
this model, recent studies have demonstrated the
existence of potential confounding variables which,
if uncontrolled, can complicate the execution and
interpretation of experiments. It has been argued
that apparent differences in the bacterial community
initially thought to be driven by host genotype can
in fact be better explained by direct microbial
maternal transmission (Ubeda et al., 2012). The
use of GF mice avoids the pitfall of microbial
maternal transmission because the mice are born
and maintained in microbe-free conditions. Trans-
ferring GF mice into specific pathogen free (SPF)
conditions, a process called conventionalization,
allows mice instead to acquire bacteria from their
environment. Whether using unique biome gavage
over a conventionalization approach eliminates
microbial community differences among experimen-
tal cohorts and functionally shapes their response
remains unclear.

In a recent study, Hildebrand et al. (2013) showed
that the variance in mice gut microbiota can be
explained, to varying degrees, by the host’s geno-
type, its cage microenvironment and inter-
individual variation. In a previous study comparing
the microbiome of conventionalized wild-type
(WT) (colitis resistant) and Il10� /� mice (colitis
susceptible) at 20 weeks, we found that the
Proteobacteria E. coli was greatly expanded in the
week 20 Il10� /� mice (Arthur et al., 2012). We
noticed a strong cage effect in which animals within
the same cage had similar microbial communities.
To account for these cage effects, we reported
median values of each cage and verified that
phenotypic difference between WT and Il10� /�

mice was not due to these cage effects. In the
present study, we wished to explore the causes and
functional consequences of these cage effects and
also to develop a formal statistical model to describe
the cage effects. We therefore used Illumina sequen-
cing to characterize the 16S gene from fecal samples
collected over time (1, 2, 4 and 8 weeks after
removal from GF conditions) from WT mice that
were either gavaged with a ‘typical’ mouse gut
microbiota harvested from adult WT mice, or
allowed to acquire the microbiota from the cage
microenvironment. We found that cage effects
required several weeks to become significant and
that while gavage had long-lasting effects on
the recipient animals that appeared to influence
Dextran Sulfate Sodium (DSS)-induced intestinal
inflammation, it did not eliminate either cage effects
or the succession of the gut microbial community
over time. Our results suggest that stochastic
differences that occur over time within each cage,
rather than the composition of the initial microbial
community, drive the formation of cage effects.
Our results also demonstrate that whether or not
an initial biome gavage is used, experimental

design must explicitly account for successional
patterns over time and cage microenvironment or
risk misinterpretation that could lead to flawed
conclusions.

Materials and methods

Acquisition of microbiota
GF WT 129/SvEv mice (24 mice) were transferred to
SPF housing conditions and the same day, either 12
mice were inoculated by gavage from an amalgama-
tion of 4 WT 129/SvEv donor fecal samples from mice
ranging in age from 2 to 3 months (‘gavage’ group) or
12 mice were allowed to naturally acquire a micro-
biota from the cage microenvironment (‘acquire’
group). Stool samples were collected and processed
for sequencing following the protocol outlined by
Arthur et al. (2012) at 1, 2, 4 and 8 weeks post transfer
to SPF conditions (Supplementary Table S5). Mice
were housed in eight cages with 2–4 mice per cage
(four gavage cages and four acquired cages).

Illumina sequence pipeline
One lane of paired-end Illumina 16S rRNA sequen-
cing of the V6 hypervariable region produced
15 467 365 reads B75 bases in length (excluding the
primer sequences). The paired-end reads were
merged, following the protocol described in Arthur
et al. (2012), into 14 931 625 sequences with an
average length of 74.46±1.18 (mean±s.d.). Because
our read length (100 bp) was longer than our amplicon
size (75 bp), we had 2� coverage on every read and
could therefore remove sequences if the paired
sequences were not in good concordance. Clustering
those reads into Operational Taxonomic Units (OTUs)
by AbundantOTU version 2.0 (http://omics.informa-
tics.indiana.edu/AbundantOTU/) took 106 min and
produced 873 OTUs using a 97% threshold incorpor-
ating 99.996% of all sequences and removing 50 863
singletons from downstream analysis. Chimera detec-
tion using UCHIME (http://www.drive5.com/uchime/)
(Edgar et al., 2011) and the Gold reference database
identified five OTUs, which we then removed
from downstream analysis. For taxonomic classifi-
cation, the AbundantOTU consensus sequences
were mapped to the Silva 108 database (http://
www.arb-silva.de/) by BLASTn with an expectation
value threshold of e� 10. The top hits were
selected and sent through RDP classifier version
2.1 (http://sourceforge.net/projects/rdp-classifier/)
(Wang et al., 2007) with an RDP confidence thresh-
old of 80% or greater used for assignment. Reads
were deposited in MG-RAST under project
ID 4514986.

Statistical analysis
OTU consensus sequences were collapsed into pivot
table format where each row represents a sample
and each column contains the raw counts for
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each OTU consensus sequence. Raw counts were
transformed using a log frequency calculation before
use in downstream analysis:

Log10

RC

n
�
P

x

N
þ 1

� �

where RC represents the number of raw counts in a
column cell (OTU, phyla, and so on) for a sample,
n is the number of sequences in a sample, the sum of
x is the total number of counts in the table and N is
the total number of samples.

Bray–Curtis dissimilarity matrixes were generated
from normalized data and Principle Co-ordinate
Analysis (PCoA) was conducted through the use of
the software package mothur (Schloss et al., 2009).
Bray–Curtis dissimilarity has been shown to pro-
duce broadly similar results as other distance
metrics (for example, see Supplementary Figure 1
in Claesson et al, 2012). Cage effects were accounted
for by incorporating mixed linear models utilizing
SAS (Supplementary code Table S6) where cages
were the random effects and genotype or treatment
was fixed. Benjamini–Hochberg method for false
discovery rate (FDR) correction was used for multi-
ple testing correction. Richness is defined as the
number of distinct OTUs in each sample. To correct
for different numbers of sequences in each sample, we
randomly subsampled (without replacement) 11 368
sequences in each sample (where 11 368 is the
number of sequences in the sample with the smallest
number of sequences) 1000 times and reported as
richness the average number of OTUs seen across
these 1000 re-samples. All statistical analyses were
conducted through R (http://www.r-project.org/), cus-
tom Java code (available upon request) and SAS
version 9.2 (SAS Institute Inc, Cary, NC).

Mixed linear models have many advantages
including a solid theoretical base (Raudenbush and
Bryk, 2002; Smyth, 2004), wide utilization in the
literature (Brown et al., 2011; Listgarten et al.; Ross
et al., 2012; Vilhjalmsson and Nordborg, 2013) and
robust implementations in statistical packages such
as R and SAS. However, mixed linear models impose
an additional set of parametric assumptions over
canonical linear models. In our case, they assume
that the effects of cages are normally distributed with
a mean of zero. These assumptions may be particu-
larly inappropriate for metagenomics data, where it
has been argued for the gut microbiome that only a
few possible outcomes (or enterotypes) are likely
(Arumugam et al., 2011). While the enterotype
hypothesis has been highly controversial (Huse
et al., 2012; Jeffery et al., 2012, Segata et al., 2012),
it seems unlikely that the opposite assumption that
there is no repeatable structure to the microbial
community within cages is broadly true. A finite
subset of possible cage outcomes might therefore
violate the assumptions of mixed linear models. With
this in mind, we compared our results with a simple
model in which the median value for each cage was
fed into a canonical two-way analysis of variance

(ANOVA) (data not shown). We saw a broadly similar
pattern of P-values with this approach, although as
we might expect this median-based linear models
appeared to have substantially lower power than the
full mixed linear model. Future research will
undoubtedly pursue the question of the most appro-
priate model for cage effects that makes the fewest
assumptions while preserving the most power, but
the broad concurrency of the median and mixed
linear models is encouraging in that it suggests that
our results are not primarily driven by the additional
parametric assumptions about cage distribution in
the mixed linear model.

Functional prediction
Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt)
(http://picrust.github.com/picrust/) is a software
package designed to infer metagenome functional
content from 16S metagenomic data. The paired-end
merged 16S sequences were used for closed-refer-
ence OTU picking using MacQIIME (Caporaso
et al., 2010) (http://www.wernerlab.org/software/
macqiime) version 1.6.0, the resulting OTU
table was then fed into PICRUSt version 0.9.1
and functional predictions were made according
to the metagenome inference workflow des-
cribed by the developers (http://picrust.github.
com/picrust/tutorials/quickstart.html#quickstart-
guide). PICRUSt results were normalized and log10
transformed according to our normalization equa-
tion, and then analyzed using the mixed linear
model where Y represents the log10 abundance of
each ortholog. P-values evaluating the null hypoth-
esis that the ortholog was observed equally in each
treatment or time point were generated for each
ortholog. For every ortholog that was significantly
different at an FDR adjusted P-value of o0.1, we
used the KEGG pathways provided by PICRUSt to
ask whether orthologs belonging to a particular
functional category (for example, Cell Motility and
Transcription) were likely to be significantly more
abundant in one treatment/time point than another.
For this purpose, we utilized Fisher’s exact test to
assess for each functional category the null hypoth-
esis that there was an equal number of its ortho-
logs present at higher or lower relative abundance
between the treatments/time points.

DSS-induced acute injury and histological evaluation
Following the 8-week period, gavaged or acquired
WT mice were given 2% DSS (MP Biomedicals,
Aurora, OH, USA) in their drinking water for 13
days while control mice received water alone. Water
consumption was comparable between the different
experimental groups. Mice were monitored daily
for weight loss and visible signs of rectal
bleeding. Occult bleeding was evaluated 4 days after
administration of DSS or water control (Hemoccult;
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Beckmann Coulter Inc., Fullerton, CA, USA), in
accordance with internal pilot studies that showed
occult bleeding to be reliably observable in this model
from day 4 onwards. Clinical score, assessing weight
loss, occult blood and stool consistency were calcu-
lated as previously described (Goldsmith et al., 2011).
Mice were killed at the indicated time points
by CO2 asphyxiation followed by cervical separation.
The colon was dissected and flushed with ice-cold
phosphate-buffered saline, longitudinally splayed,
swiss rolled, fixed in 10% formalin for 24 h, and then
embedded in paraffin. Colitis severity was evalua-
ted using Hematoxylin–Eosin-stained sections by
a blinded investigator on a scale from 0 to 40, as
described previously (Goldsmith et al., 2011).

All animal experiments were approved by the
Institutional Animal Care and Use Committee of the
University of North Carolina at Chapel Hill.

Results

Gavage can modulate the microbial community, but
does not eliminate cage effects or succession over time
In a previous study (Arthur et al., 2012), we
observed pronounced cage effects with distinct
microbial communities present in different cages.
To determine if such cage effects could be elimi-
nated by an initial common biome gavage, GF WT
mice were transferred to SPF conditions, where one
cohort was immediately associated with a unique
donor microbial community pooled from adult WT
mice (hereafter referred to as the ‘gavage’ treatment)
while another cohort was allowed to acquire their
microbial community from the cage environment
(hereafter referred to as the ‘acquired’ treatment).
Fecal samples were collected at weeks 1, 2, 4 and 8
following removal from GF conditions and the
microbial community was characterized by paired-
end HiSeq Illumina sequencing targeting the V6
region of the 16S rRNA gene.

An examination of the results from all animals at
the phyla level (Figure 1) demonstrates that at the
1-week time point, the gavage-treated animals
appeared to have a microbial community that was
in some ways a mixture of the donor community
(Figure 1, rightmost bar) and the community in the
‘acquired’ group. The contribution of Proteobacteria
(7.5%) in the gavage group was intermediate
to the large fraction (41%) of Proteobacteria in
the acquired cohort and the smaller fraction in the
donor biota (1.5%). It appears, therefore, that the
donor community influenced, but did not comple-
tely seed, the resulting microbial community at 1
week. Over time, the fraction of Proteobacteria
decreased in both the acquired and gavage groups.
By week 8, the phyla view of these two groups was
very similar (Figure 1). Richness in both the gavage
and treatment groups increased over time (Figure 2),
suggesting that the initial seeding of the microbial
community by gavage did not give the gavage group

a substantial ‘head start’ in forming a mature
microbial community.

To perform inference on this data set and explicitly
consider the effects of cage, treatment and time, we
performed PCoA using Bray–Curtis dissimilarity at
the OTU level (Figure 3a). We see that time is a
dominant force in structuring the microbial
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community with clear separation of samples at
different time points. However, at each time point
the gavage and acquired microbiota appear to
be distinct (Figure 3b, top panel), although over
the course of the experiment the differences between
gavage and acquired microbiota become less
pronounced.

If initial differences in the microbial community
drive cage effects, we might expect to see a different
pattern of cage effects in the gavage and acquired
groups. Examination of the PCoA plots colored by
cage (Figure 3b, bottom panel), however, revealed
pronounced cage effects in both the acquired and
gavage groups, especially at later time points. To
quantify cage effects, we fit each treatment group at
each time point with a one-way ANOVA with a fixed
factor of cage. P-values generated from this model
(Figure 4) show that the gavage and acquired groups
have a similar pattern of cage effects. At the 1-week
time point (Figure 4, black symbols), cage effects
appear to be of marginal significance at best. At the
4- and 8-week time points, the cage effects have
become much more pronounced in both the gavage
and acquired groups, although the P-values are
slightly larger in the gavage group.

To account for the effects of cage, treatment and
time, we evaluated a mixed linear model in which

treatment and time is a fixed effect and cage is a
random effect (see Materials and methods). The
model is formulated as:

Yijkl ¼ mþGi þTj þðGTÞij þCkðiÞ þ eijkl

where Yijkl represents PCoA axis value
(Figure 5; Supplementary Table S1), phylum
count (Supplementary Table S2), genus count
(Supplementary Table S3) or richness value
(Supplementary Table S4) for treatment i, time j,
cage k and replicate l. Gi is the effect of the ith
treatment. Treatment is set to one value for animals
receiving gavage and another for animals allowed
to acquire the microbial community from the cages.
Tj is the effect from the jth time point. (GT)ij is the
interaction effect between treatment i and time j.
Ck(i) is the effect from the kth cage that is nested
within the ith treatment and eijkl denotes the error
associated with measuring Yijkl.

From this model, we conclude that time and
time� treatment interaction effects are generally
more pronounced than the treatment effect,
confirming that the implantation of a founder com-
munity through gavage did not eliminate the strong
successional effect of time. Specifically, (i) richness
changed over time but was not affected by treatment
(Supplementary Table S4); (ii) at the phyla level
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(Supplementary Table S2) and using a 10% FDR, time
and treatment� time interactions are significant for all
evaluated phyla and (iii) at the genus level, time and
treatment� time interaction represents the first 49
most significant effects (Supplementary Table S3).

Gavage treatment protects from cage effects of
inflammation
Even though gavage did not eliminate temporal
effects, the abundance of several taxa was signifi-
cantly different between gavage and acquired groups

independent of time. At a 10% FDR cutoff at the
phyla level (Supplementary Table S2), the treatment
variable for both Bacteroidetes and Firmicutes was
significantly different between gavage and acquired
groups independent of time. At the genus level,
the 10% FDR cutoff yielded 20 genera whose
abundance was significantly different between
gavage and acquired groups independent of the
time factor (Supplementary Table S3). This suggests
that, despite the overall progress of acquired and
gavage groups to become more similar to each other
(Figure 1), the gavage treatment did have some long-
lasting effects.

To study the functional consequences of cage
effects, we treated acquired or gavaged mice after
materials for sequencing were acquired at the
8-week time point with DSS for 13 days. At the
end of DSS exposure, mice were killed and colonic
inflammation was assessed using histological
scoring. As a negative control, five mice (n¼ 2 for
gavage; n¼ 3 for acquired) not exposed to DSS
were euthanized at this same time point and scored
for inflammation. All control mice showed absence of
intestinal inflammation with histological scores of
zero (data not shown). Inflammatory scores of mice
exposed to DSS were highly divergent between cages
of mice with an acquired biome compared with those
that were gavaged (Figures 6b and d). Interestingly,
Lactobacillus, a taxa that is generally considered to
have anti-inflammatory properties (Servin, 2004;
Santos Rocha et al., 2012; von Schillde et al., 2012),
was found to be significantly associated with time,
treatment� time and treatment under the mixed
linear model analysis of the gavage vs acquired data
set (Figures 6a and c; Supplementary Table S3). With
our small sample size, we cannot meaningfully
speculate on whether these associations are robust
and would be reproducible in future cohorts. None-
theless, these data are intriguing in suggesting that
long-term effects of an initial gavage may insulate an
animal from environmentally induced susceptibility
to cage effects in phenotypes of interest.
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Figure 4 Cage effects illustrated through the use of Bray–Curtis PCoA performed at the OTU level. Shown for the first 12 PCoA
co-ordinates are the P-values from a one-way ANOVA with a fixed factor of cage evaluating the null hypothesis that cage had no effect on
the distribution of the co-ordinate.

Figure 5 For the first 20 co-ordinates from a PCoA at the OTU
level, P-values from the mixed linear model evaluating the null
hypothesis that the fixed effects of time, treatment (gavage vs
acquired) and treatment� time interactions had no effect on the
co-ordinate shown on the x axis. Dotted line represents P¼ 0.05
significance level.
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Successional differences over time can be associated
with a shift in genome emphasis from motility and
invasion to metabolic function
Differences in community functional attributes
were evaluated through the use of PICRUSt
(http://picrust.github.com/picrust/), which provides
an avenue for functional prediction from 16S
sequences (see Materials and methods). To assess
how these functional categories change over time, we
again utilized our mixed linear model to compare
PICRUSt predictions that differed between the ear-
liest (1 week) and latest (8 weeks) time points
independent of treatment. We used a Fisher’s exact
test to identify KEGG functional categories in which a
significant number of orthologs differed between
week 1 vs week 8 time points. At a 1% FDR cutoff,
we observed a preferential selection for pathogenesis
and motility at the early (1 week) time point.
Of the orthologs that were significantly different
between the week 1 and week 8 time points, 97%
of orthologs with a KEGG functional category
of ‘Cell Motility’ and 88% of the orthologs with
a KEGG functional category of ‘Infectious Diseases’
showing a higher relative abundance at the
early time point (Table 1). By contrast, functional

selection in the late (8 weeks) time point shifts to
metabolic and cell maintenance (Table 1).

Discussion

To explore the causes and consequences of cage
effects, we here used Illumina sequencing to char-
acterize the bacterial 16S gene repertoire from fecal
samples collected over time for two cohorts
(acquired and gavaged) of mice following removal
from GF conditions. Time stands out as the primary
influential factor in structuring microbial commu-
nities from an environment with low richness and a
substantial fraction of Proteobacteria into a more
‘adult’ mammalian gut with increasing richness and
greater domination by Bacteroidetes and Firmicutes.
Interestingly, although Proteobacteria represent an
important community member in both acquired
and gavaged mice, this phylum is progressively
phased out over time. This observation is in line
with a previous study showing ecological succession
in GF mice, with pioneering Proteobacteria being
replaced by other community members (Gillilland
et al., 2012). Superimposed on these broad and
reproducible successional patterns, however, was

Figure 6 Relative abundance of genera in (a) gavage and (c) acquired at the 8-week time point broken down by cages. Each bar represents
an individual mouse’s microbial community before treatment with DSS. Differences in inflammation scores between cages were not
significant for the gavage mice (b) but were for the acquired mice (d) with both a parametric one-way ANOVA and a non-parametric
Kruskal–Wallis (with the indicated P-values). Error bars represent the s.d. or dispersion from the mean in each set of samples.
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substantial individual variation in microbial commu-
nities that could in large part be explained by the cage
in which the animals were housed. Starting the
microbial community with an initial gavage from a
mature gut microbial community influenced, but
did not eliminate, the dependency on time or cage
effects.

A long-standing question in ecology is to what
extent community structure is driven by selection vs
stochastic events. In our data, we find evidence for
both kinds of processes. Our data demonstrate that
initial composition of the microbial community
(gavage vs acquired), selection pressure over time
common across all cages, and stochastic effects that
develop differently over time in different cages all
make important and measurable contributions in
structuring the microbial community. Interestingly,
while richness increased over time in our gavage vs
acquired experiment, there was no significant
difference from richness induced by the gavage
treatment. This suggests that even though mice
exposed to a ‘bolus’ of microbes (gavage) with a
presumably higher number of bacteria than the
acquired group, many of these microbes did not
successfully colonize the gavaged group.

In addition to using 16S sequencing to character-
ize the microbial community, we studied the
functional consequences of microbiota cage effects
by inducing acute inflammation in WT mice with
DSS. Inflammation scores established by histologi-
cal examination of colon tissue revealed that
animals that were allowed to acquire their micro-
biota from the cage environment displayed a more
pronounced cage effect in inflammation severity
than animals whose microbial community was
seeded by gavage. In our analysis utilizing mixed
linear models with cage modeled as a random
variable, treatment (gavage vs acquired) effects on
the structure of the microbial community were
generally much less pronounced than effects due
to time or interactions between time and treatment.
There were, however, 2 phyla (Bacteroidetes and
Firmicutes) and 20 genera (including Lactobacillus)

whose abundance was significantly different
between gavage and acquired groups independently
of time. These observations suggest that the initial
founding community (that is, gavage) can have long-
term effects on host health and disease, even in the
face of robust community changes that occur over
space and time.

There is considerable evidence for cage effects in
the literature. In several disease models, microbial
transfer of intestinal disease can be accomplished
by housing healthy WT mice with colitic mice
(Garrett et al., 2007; Elinav et al., 2011). Mice are
coprophagic, and sharing the microbial community
in this manner presumably has a substantial effect on
maintenance of microbial community structure. We
explicitly tested the hypothesis that cage effects
are caused by initial differences in the microbial
community within each cage. If these stochastic
‘founder’ effects drive cage effects, then we would
expect (i) cage effects to be pronounced at early time
points and (ii) gavage to substantially mitigate cage
effects. Neither of these predictions were supported
by our data. By contrast, cage effects clearly become
more pronounced over time, moving from barely
significant at week 1 to highly significant at weeks 4
and 8. This pattern is clearly seen in both the gavage
and acquired groups, with only slightly less signi-
ficant P-values in the gavage group (Figure 4).
Therefore, our data argue that stochastic differences
in community assembly occur within each indivi-
dual cage microenvironment, and it is these changes,
rather than founder effects, that are the primary
drivers of cage effects. Attempts to eliminate cage
effects by standardizing the initial microbial com-
munity within cages or with identical initial gavage
to multiple animals are therefore likely to fail.

A recent paper (Ubeda et al., 2012) has argued that
family transmission, if not properly accounted for,
can lead to confounded experimental design and
incorrect inference regarding the effects of genotype
differences on the microbial community. We note
that since our animals were born in GF conditions,
family transmission is not a variable that can be

Table 1 Functional differences between early (1 week) and late (8 weeks) time points at 1% FDR identified with PICRUSt

Functional category # of
Orthologs

# of Non-significant
orthologs

# of Orthologs
up at week 1

# of Orthologs
up at week 8

Ratio up

Early
Cell motility 69 25 43 1 0.977272727
Infectious diseases 51 8 38 5 0.88372093
Signal transduction 135 22 93 20 0.82300885
Membrane transport 674 154 424 96 0.815384615
Cellular processes and signaling 490 106 294 90 0.765625
Metabolism of cofactors and vitamins 204 90 61 53 0.535087719

Late
Translation 160 28 28 104 0.787878788
Replication and repair 146 30 48 68 0.586206897
Nucleotide metabolism 107 30 32 45 0.584415584

Ratio indicates the fraction of significant orthologs identified as having higher relative abundance at each time point.
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considered in our experiments. However, by neces-
sity, animals that have a similar path of family
transmission have also shared cages. In animals born
elsewhere than under GF conditions, cage and family
transmission effects are therefore likely to be
entwined and this has the potential to further
confound and complicate experimental design. By
co-housing gavaged and non-gavaged animals,
future studies may provide further insight into
how initial seeding effects interact with environ-
mental constraints on the development of the gut
microbiome.

Our analysis took advantage of PICRUSt (http://
picrust.github.com/picrust/), a recently developed
bioinformatics method that simulates whole
genome metagenome sequencing based on 16S data.
In a mouse model where there is a reproducible
early selection for Proteobacteria, our PICRUSt data
suggest that there is also an overrepresentation
of gene function associated with community compo-
sition. Results from PICRUSt revealed a functional
selection for motility and infection (Table 1). This is
consistent with the hypothesis that Proteobacteria are
optimized for conditions present in the early forma-
tion of the gut microbiome. These results, while
biologically plausible, will need to be directly con-
firmed in future studies by whole-genome methods,
such as whole community shotgun sequencing and
RNA-seq, performed longitudinally over succession.

There are numerous potentially confounding
variables to consider when planning microbiome
studies, including the location of sampling
(Gillilland et al., 2012), maternal transmission
(Ubeda et al., 2012), the time after gavage experi-
ments are performed (Gillilland et al., 2012) and
husbandry conditions (Ma et al., 2012). To this
growing list of potentially confounding variables,
we here demonstrate that cage microenvironment
is a powerful driver of individual differences
in community structure. Despite the complexity
inherent to so many potential confounding vari-
ables, we find that simple mixed linear models are
adequately powered to produce significant results,
even for the modest numbers of animals and
cages that made up our experiment. This demon-
strates that if experiments are planned with con-
sideration given to the number of cages as well as
the number of animals, successful microbiome
experiments with interpretable outcomes can be
achieved despite substantial variability induced by
space and time.
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